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Abstract

Biomass-burning aerosols contribute to aerosol radiative forcing on the climate sys-
tem. The magnitude of this effect is partially determined by aerosol size distributions,
which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume mi-
crophysical processing. The uncertainties in biomass-burning emission number size-
distributions in climate model inventories lead to uncertainties in the CCN concentra-
tions and forcing estimates derived from these models.

The BORTAS-B measurement campaign was designed to sample boreal biomass-
burning outflow over Eastern Canada in the summer of 2011. Using these BORTAS-B
data, we implement plume criteria to isolate the characteristic size-distribution of aged
biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in Northwestern
Ontario. The composite median size-distribution yields a single dominant accumula-
tion mode with Dy, = 230 nm (number-median diameter), o = 1.7, which are compa-
rable to literature values of other aged plumes of a similar type. The organic aerosol
enhancement ratios (AOA/ACO) along the path of Flight b622 show values of 0.05—
0.18 ug m= ppbv_1 with no significant trend with distance from the source. This lack
of enhancement ratio increase/decrease with distance suggests no detectable net OA
production/evaporation within the aged plume over the sampling period.

A Lagrangian microphysical model was used to determine an estimate of the freshly
emitted size distribution corresponding to the BORTAS-B aged size-distributions. The
model was restricted to coagulation and dilution processes based on the insignificant
net OA production/evaporation derived from the AOA/ACO enhancement ratios. We
estimate that the fresh-plume median diameter was in the range of 59-94 nm with
modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrain-
ment rate). Thus, the size of the freshly emitted particles is relatively unconstrained
due to the uncertainties in the plume dilution rates.
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1 Introduction
Biomass burning particles

Biomass burning is a significant emission source of carbonaceous aerosols to the
global atmosphere (Andreae and Merlet, 2001; Reid et al., 2005). In addition to re-
leasing high levels of greenhouse gases (CO,, CO) and volatile organic compounds,
biomass burning releases smoke particles that have climate impacts through the di-
rect and indirect aerosol effects. These particles are primarily composed of a mixture
of black carbon and organic carbon, with inorganics contributing some mass (Capes
et al., 2008; Carrico et al., 2010; Cubison et al., 2011; Hecobian et al., 2011; Hennigan
et al., 2011; Hudson et al., 2004; Reid et al., 2005). These particles directly affect the
earth’s radiation balance and climate by scattering and absorbing incoming solar radi-
ation (Haywood and Boucher, 2000; Jacobson, 2001). Biomass burning particles may
also act as cloud condensation nuclei (CCN) and affect climate and radiation through
modifying cloud albedo and lifetime (Pierce et al., 2007; Spracklen et al., 2011) (indirect
aerosol effects). Globally, the direct and indirect climate effects represent the largest
uncertainties in radiative forcing as quantified by the recent IPCC report (Myhre et al.,
2013), and biomass burning emissions represent significant contributions to each of
the effects globally (Alonso-Blanco, 2014; Lee et al., 2013).

The size of biomass-burning particles (and all particles in general) can have large
impacts on the magnitude of these direct and indirect effects (Lee et al., 2013; Sein-
feld and Pandis, 2006; Spracklen et al., 2011). Regarding the direct effect, the mass-
scattering and mass-absorption efficiencies (the amount of scattering and absorption
per mass of aerosol particles) depend on the size of the particles, so errors in the
predicted/assumed values of biomass-burning particle size may lead to errors in simu-
lated direct aerosol climate effects (Seinfeld and Pandis, 2006). Regarding the indirect
effect, particles that are larger in diameter and more hygroscopic are more likely to act
as CCN (Petters and Kreidenweis, 2007). Typically particles larger than 30—100 nm act
as CCN depending on conditions and hygroscopicity (Petters and Kreidenweis, 2007;
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Petters et al., 2009), though this range may be slightly larger sizes for fresh biomass-
burning particles due to these particles being initiallymore hydrophobic than typical
ambient aerosol (Carrico et al., 2010; Petters and Kreidenweis, 2007). Furthermore,
for constant emissions mass, a factor-of-2 change in diameter, leads to a factor-of-8
change in number emissions, which may contribute to significant changes in CCN con-
centrations (Pierce et al., 2007; Spracklen et al., 2011). Thus, it is important to provide
accurate emissions sizes from biomass burning sources to atmospheric aerosol mod-
els looking at aerosol—climate interactions. Lee et al. (2013) found that uncertainties
in biomass-burning aerosol emission diameter were responsible for large uncertainties
in CCN concentrations in the GLOMAP model (third largest CCN sensitivity out of 28
globally).

Atmospheric processing causes the physical and chemical properties of biomass-
burning (BB) aerosol evolve over time. These processes have an effect on the size and
composition of the particles, and thus influence their direct and indirect effects. Coag-
ulation is a driving factor in size-distribution evolution due to the high concentrations
of particles within plumes (Andreae and Merlet, 2001; Capes et al., 2008). Production
of secondary organic aerosol (SOA) in-plume has been observed in chamber studies
(Cubison et al., 2011; Grieshop et al., 2009; Hennigan et al., 2011; Heringa et al.,
2011; Ortega et al., 2013) and in the field (DeCarlo et al., 2010; Lee et al., 2008; Reid
et al., 1998; Yokelson et al., 2009), and this SOA will condense onto the particles grow-
ing them to larger sizes. In addition, the primary organic aerosol (POA) emitted by the
fires may evaporate during the dilution of the plume (Hennigan et al., 2011). Finally,
new particle formation in smoke plumes has been observed in smog chamber studies
(Hennigan et al., 2012) as well as in the field (Andreae et al., 2001; Hobbs et al., 2003;
Rissler et al., 2006).

In global and regional modeling of biomass-burning aerosols, mass-based biomass-
burning inventories are the standard, and are generally not accompanied by size
data (Reid et al., 2009; van der Werf et al., 2010; Wiedinmyer et al., 2011), leaving
size-distribution estimates to the individual investigator. Current global and regional
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atmospheric aerosol models have gridbox spatial scales (10—-100 s of kms) much larger
than many initial biomass-burning plume widths (< 10 km). This means that sub-grid
aging of aerosol plumes by microphysical (coagulation, condensation/evaporation and
nucleation) processes will lead to changes in the size distribution that the models can-
not explicitly resolve. Therefore, the biomass-burning emissions size distributions must
be aged distributions that already account for sub-grid processes. Quantifying the nat-
ural variations in biomass-burning aerosols are therefore necessary for accurate pre-
dictions. Previous studies of field and lab experiments show biomass burning size-
distributions vary according to plume age, combustion phase, and fuel type (Hennigan
et al., 2011; Hosseini et al., 2010; Janhall et al., 2010; McMeeking et al., 2009; Okoshi
et al., 2014). A review of observed size distribution data by Janhall et al. (2010) showed
the differences in modal width and median diameter as a function of fuel type (forest,
savannah, grass), modified combustion efficiency, and plume age (fresh vs. aged).
Smog chamber experiments in the FLAME lab have demonstrated similar fuel-type
differences in fresh BB size-distributions (Levin et al., 2010).

Due to the combination of emission and atmospheric processing factors contribut-
ing to the evolution of the BB aerosol size-distribution, characterization of observed,
aged BB aerosol is valuable. Adding to the database of observations helps constrain
the uncertainties associated with aerosol size. Thus, to improve biomass-burning-
aerosol/climate interactions in models, there is a need to characterize the size of par-
ticles in aging and aged biomass-burning plumes for a range of fire types and atmo-
spheric conditions (Bauer et al., 2010; Chen et al., 2010; Lee et al., 2013; Pierce et al.,
2007; Reddington et al., 2011; Spracklen et al., 2011). In this paper, we specifically
investigate the size distributions measured in aged plumes (1-2 days) of large boreal
forest fires over Canada.

In this paper, we analyze size-distribution and organic aerosol data from BORTAS-
B flights that sampled highly concentrated smoke plumes over Eastern Canada on
2021 July 2011. A brief overview of the BORTAS-B campaign, instrumentation, and
source fire conditions are provided in Sects. 2.1-2.2. A description of the quantitative
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plume criteria used to determine plume (vs. out of plume) sampling periods is found
in Sect. 2.3. In addition to observational data, we use an aerosol-microphysics box
model to simulate the microphysical evolution of number size-distributions. This model
was employed to estimate the likely fresh-plume size distribution associated with the
source fires sampled by BORTAS-B. A full model description is provided in Sect. 2.4.
We present the BORTAS-B research flight results in Sect. 3, which include the mea-
sured aged size distributions, evidence for/against net OA production, and the aging
simulations. Finally, we provide conclusions in Sect. 4.

2 Methods
2.1 BORTAS overview

The Quantifying the impact of BOReal forest fires on the Tropospheric oxidants over the
Atlantic using Aircraft and Satellites (BORTAS-B) measurement campaign was held in
Eastern/Atlantic Canada from 11 July to 3 August 2011 (Palmer, 2013). The goal was
to characterize pyrogenic outflow from boreal forest wildfires using a variety of sam-
pling and observational techniques with emphasis on plume photochemical evolution.
BORTAS-B was the second phase of a collaborative effort between UK and Canadian
groups after a less intensive BORTAS-A campaign took place over the same geograph-
ical area in 2010 (Palmer, 2013).

BORTAS-B incorporated predictive chemical transport modelling (GEOS-Chem),
satellite observations, a ground-based in-situ network of sondes (Environment Canada)
and ground-base samplers and profilers (Dalhousie Ground Station, DGS), and the UK
Facility for Airborne Atmospheric Measurements Airborne Research Aircraft (FAAM-
ARA) for inflight sampling. For a complete overview of the BORTAS-B set-up and in-
strumentation, see (Palmer, 2013). The ARA flew fourteen research flights over the
campaign period.
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The flight paths of the ARA flights that we analyze in this paper can be seen in Fig. 1.
Flights BAE-b622 and BAE-b623 were research flights between Halifax, NS and Sher-
brooke, QB spanning 20-21 July 2011. They flew ascent and descent patterns (ranging
~ 1-7 kma.s.l.) to sample vertical and horizontal transects in regions forecasted to con-
tain biomass-burning plumes. These flights were selected because they were roughly
co-located and back-to-back, increasing the likelihood of sampling similar outflow and
allowing for a common plume criteria to be applied across both flights. They also con-
tained the majority of biomass-burning aerosol sampling during the campaign.

In addition, Flight b622 sampled along a relatively straight path to/from the fires
that allowed for analysis of the evolution of plume aerosol properties (Flight b623 had
a much more complicated and compact sampling path so we did not use this flight
to determine the evolution of aerosol properties). We have divided these flights into
vertical transects by ascent/descent with the midpoints transect represented in Fig. 1.

The sampled wildfire plumes originated from intense regional fires near the North-
western Ontario—Manitoba border (centred 52°N, 93°W). The MODIS hotspots in
Fig. 1 show a number of intense fires (fire radiative power > 100 MW) in northwest-
ern Ontario for the three days prior to the analyzed flights (1720 June 2011). Ac-
cording to the Ontario Ministry of Natural Resources, Ontario experienced one of its
worst fire seasons in terms of burned area with 635374 ha burned in 2011. This is
significantly greater than the acreage burned in 2010 during the BORTAS-A campaign
(15000 ha). The abundance of individual fires in a relatively large source region lead
to mixed combustion phases and dominant hotspots over the course of the campaign.
A combination of flaming and smouldering phases were reported by Natural Resources
Canada with primary fuels consisting of jack pine (pinus banksiana) and black spruce
(picea mariana) throughout the fire region (Ontario ministry of natural resources: 2011
forest summary).

The dominant west-east climatological meteorology during the BORTAS-B campaign
allowed the biomass-burning emissions from these fires to be transported downwind
over the ground-base, DGS, in Halifax, NS (44.5° N, 63.1° W). The plumes intersected
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by flights b622 and b623 had a physical transport age estimated through HYSPLIT
backtrajectories of between 1-2 days as summarized in Table 1. The backtrajec-
tory analysis (not shown) shows air masses passing over the biomass-burning region
later being intersected by the flight paths at varying altitudes. The estimated photo-
chemical age of the plumes, based on non-methane hydrocarbon analysis via Parrish
et al. (2007) was calculated by Palmer et al. (2013) to be 1-5 days for b622 and 2—4
days for b623; however, this is different than the time since passing over the fire region
because the photochemical age includes the photochemical age of air mixed into the
plume.

2.2 ARA instrumentation

The ARA aircraft was outfitted with instruments designed for sampling chemical and
physical characteristics of biomass-burning outflow. Gaseous and particulate in-flight
sampling was accomplished across a suite of instruments; the relevant instruments
for this study are described below. A full description of all payload instruments can be
found in (Palmer, 2013).

The suite of instruments on the ARA included measurements of multiple gaseous
biomass-burning tracers. Carbon monoxide (CO) mole fraction was measured via VUV
Fast fluorescence CO analyzer averaged over 1s (3 % estimated accuracy). Acetoni-
trile (CH3CN), a biomass-burning marker VOC associated with plant pyrolysis, was
measured along with a number of other VOCs with a proton-transfer-reaction mass
spectrometer (PTR-MS) system (co: University of East Anglia). The PTR-MS concen-
trations were averaged over 1s with an estimated precision of +37 ppt (Palmer, 2013).

Aerosol composition measurements used here were taken by (i) refractory black
carbon (BC) mass and number measurements from a Single Particle Soot Photometer
(SP2) (accuracy 20 %, precision 5 %, 5 s averaging time) and (ii) non-refractory organic
aerosol (OA) via an aerosol mass spectrometer (precision ~ 15—-150 ng m'3) both op-
erated by the University of Manchester (Taylor et al., 2014). The number concentrations
of the combined aerosol particles was measured by Scanning Mobility Particle Sizer
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(SMPS) with 26 lognormally-spaced diameter bins ranging from 20-330 nm and cor-
rected to STP. A full scan takes 60 s (Palmer, 2013). The SMPS data was inverted using
the commonly-used Wiedensohler (1988) parameterisation, however recent work has
suggested that this may be quantitatively unreliable in this situation due to variations in
the charging efficiency with pressure (Lépez-Yglesias and Flagan, 2013; Leppé et al.,
2014). While this may have affected the magnitude of the number concentrations, no
altitude dependency was noted on the sizing data, so the conclusions of this paper
regarding particle size are unaffected.

The combination of gas and particle tracer measurements listed above were used
to identify flight periods of biomass-burning plume sampling, determine if SOA forma-
tion or OA evaporation may have occurred in the plume, and characterize the size-
distribution of aerosols within the plume.

2.3 Plume criteria

We determine if measurements are in-plume vs. out-of-plume using threshold plume
criteria. We designate sampling periods as in-plume if pre-specified threshold values
of four tracer species: CO, CH;CN, BC, and OA, were exceeded. For out-of-plume
conditions, we determine “background values” for each tracer by averaging the tracers
over the out-of-plume periods.

Carbon monoxide (7., ~ months, Staudt et al.,, 2001) and acetonitrile (7,c, ~ 6
months, Holzinger et al., 2005) were used in conjunction as gaseous tracers due to
their high mixing ratios in biomass-burning plumes relative to the background and long
atmospheric lifetimes relative to the estimated plume transport times. The background
CO levels were 80-120 ppbv with an overall average of 100 ppbv. The threshold CO
value was set to 150 ppbv (1.5x [background]), with some CO concentrations in-plume
reaching ten times background concentrations (1000 ppbv). The threshold CH;CN level
was 200 pptv (background ~ 100 pptv).

The particulate matter thresholds (BC number, OA mass) were introduced to en-
sure high-enough aerosol contributions to the plume to analyze size-distributions.
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This ensured high-gas, low-aerosol sampling periods were not included in the size-
distribution analysis. At least one case of this situation in BORTAS-B has been at-
tributed by Franklin et al. (2014) to aerosol rainout during transport. The mean back-
ground concentrations for both BC number and OA mass were minimal (< 20 cm™> and
2ug m~3 respectively). The threshold values were set to 50 cm™ for BC number and
20 ug m~2 for OA mass.

The selected CO, CH5CN, aerosol data, and flight altitude time series for Flight b622
is shown in Fig. 2. The flight is divided into transects (labeled 1-9 and colored) as seen
in the altitude plot (Fig. 2, bottom). We use these in-plume time periods to differentiate
between in-plume and background aerosols throughout the paper.

2.4 Model description

We use a Lagrangian box model to simulate the evolution of the biomass-burning size
distribution due to coagulation. The model has fifty-five logrithmically distributed size
bins that correspond to the size bins of the SMPS on the ARA and extend to both larger
and smaller diameters. The model includes coagulation and dilution as the only phys-
ical processes, with no chemistry or speciation of the aerosol (we show in Sect. 3.2
that we cannot see evidence of net OA condensation/evaporation in the plume). We
use an inverse method to estimate the initial fresh (~ 1 h) size-distributions by succes-
sively running the model from emission to observation forward in time and changing the
initial size distribution until the model most closely matches the observed aged size dis-
tribution. This method estimates the initial distribution assuming that coagulation was
the only physical processes affecting the in-plume particles. The box model does not
include any cloud interaction chemistry, which could have influenced the distribution
considerably depending on meteorological conditions, notably through wet deposition
and aqueous chemistry.

Each model forward simulation requires the fresh size-distribution input as a single
lognormal mode with parameters: median diameter (D,,), modal width (o), and particle
number (N,). For coagulation, we use the brownian coagulation kernel of Fuchs (1964).
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Dilution of the plume in transport was modelled using a simple e-folding volume mixing
time, 74. This parameter controlled the entrainment each timestep between the in-
plume and background aerosol. The rate of plume dilution may significantly affect the
rate of coagulation throughout the simulation (the coagulation rate is proportional to
N?). Different values of T4 Were tested to account for a range of entrainment rates as
the dilution rate in the plume is relatively unconstrained. We test 7, values of 24, 36
and 48 h. The 36 h dilution rate was based on an estimate of volume expansion from
Gaussian plume equations with an initial plume width of 10km in a neutral stability
environment (Klug, 1969). The range (24—48 h) accounts for atmospheric stability and
plume width variations in the BORTAS source region. The model simulation time is 48 h
based on the upper age limits shown in Table 1.

To determine the best estimate for initial conditions, we simulate a range of fresh
plume parameters: median diameter, D,,,, modal width, o, and number, N,,. The input
median diameter range was between 60—120 nm (increment = 1 nm), with o ranging
from 1.0-2.5 (increment = 0.1) and N, ranging from 5000—-150 000 cm™3 (increment =
500 cm‘s). The parameter space was optimized by brute force (i.e. every combination
of input parameters was simulations) for each set dilution time and the final modelled
size-distribution was compared to the observed in-plume size distribution by an equally
weighted objective function. The objective function used was the sum of the absolute
residual across the SMPS range. Modelled data outside of the SMPS size range was
not used in the objective function.

3 Results

3.1 Observed size distributions

Observed SMPS size-distributions for individual plume transects showed highly ele-
vated particle counts with little variation between transects and flights. The transect-
divided data for Flight b622 are shown in Fig. 3. Transects 2—6 and 9, show a clearly
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elevated accumulation mode within the plume, with a peak median diameters of 180—
240 nm. Transects 1, 7 and 8 have significantly less data (< 3 data points per size bin)
due to the lesser in-plume sampling periods (incomplete SMPS scans).

Those transects with sufficient plume data (> 3 data points per bin) are plotted
against their accumulation mode median diameter D, in Fig. 4. We do not observe
any discernible trend in size-distribution with the distance from the source fires in ei-
ther median diameter or number concentration. This lack of a trend suggests that the
microphysical processing during the range of distances sampled has smaller effects
on the size distribution than the variability between plumes for Flight b622. Similarly
small inter-transect variation was seen for Flight b623 (not shown). The median size-
distributions show no bias based on altitude or ascent/descent rate as an artefact of
SMPS flow rate fluctuations from altitude changes (not shown).

The composite median distribution across all plume sampling periods and both flights
is shown in Fig. 5a. This characteristic size distribution is presented as a median
value, minimizing the contributions of outlying data. Figure 5b shows the same com-
posite distribution normalized by CO concentration to attempt to account for differ-
ences in the amount of emissions from the source. The plume particle size-distribution
shows the median size distribution highlighted in black, with the 25th and 75th per-
centiles outlined in red. A clearly defined accumulation mode was identified centred at
Dy =230nm and with a modal width of 1.5, based on a single lognormal mode fit.
Normalizing the plume distribution by CO mixing ratio produced a very similar pattern
shown in Fig. 5b (accumulation mode: D, = 230nm, ¢ = 1.4). The composite back-
ground aerosol size-distribution (sampling periods that failed the in-plume criteria) are
seen in black (with 25th and 75th percentiles shown in gray) in Fig. 5a. It shows rela-
tively constant dN/dlog D, concentrations across the SMPS range and is lacking the
concentrated accumulation mode found in-plume.

The aged composite size-distribution and associated lognormal parameters are sim-
ilar to those found in other field studies of aged biomass-burning emissions. Aged
biomass-burning size distributions compiled by Janhall et al. (2010) for all different fuel
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types show a similar D, to modal width ratio (D, = 175-300nm, ¢ = 1.7-1.3). Capes
et al. (2008) show similar aged BB size distribution parameters over West Africa dur-
ing the DABEX campaign (D, = 240nm). The ARCTAS-B campaign over Northern
Canada sampled similar Boreal pyrogenic outflow and collected very similar aged dis-
tributions of BC and OC constituents (D, = 224+14nm, 0 = 1.33+0.05) (Kondo et al.,
2011).

Of note in the BORTAS-B plume size distribution is the elevated number concentra-
tions of small diameter particles (20-90 nm), which form an elevated small-diameter
“tail” of the distribution. These higher concentrations were not expected due to the high
rate of removal of small particles by coagulation with the larger particles in the accu-
mulation mode. We calculated first-order coagulational-loss timescales to investigate
the timescale of the removal of these small particles by the larger plume particles. If
these small particles were brought into the plume by entrainment of background air,
there would be an associated amount of time before these particles were lost by coag-
ulation. For the calculation, we assume brownian coagulation of entrained background
aerosol (bin range 20-90nm) with the observed in-plume SMPS data (90-333 nm)
and with artificial large-diameter bins from 330 nm to 1 um (6 bins). These artificial bin
concentrations were based on the accumulation mode lognormal fit and account for
those particle concentrations at sizes larger than those measured by the SMPS but
that nonetheless contribute to the coagulational scavenging of the small-diameter par-
ticles. Particles with diameters > 1 um were ignored since their relative scarcity relative
to the large number of accumulation-mode particles causes a negligible impact on the
number-concentration driven coagulation process.

The predicted concentrations of background aerosol remaining after 24, 36 and 48 h
are shown in Fig. 6a. These times are within the estimated physical transport age
ranges of the transects. After 12 h, coagulation alone has already caused a significant
decrease in the concentrations of the smallest measured particles, reducing them to
levels well below the concentrations observed in plume (red line). This deficit increases
with time (f = 36 h, t = 48 h). The coagulation lifetimes of the particles in this diameter
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range (30-90 nm) are seen in Fig. 6b and extend into the tens of hours. Note that the
concentrations of these small-diameter particles are similar in the plume compared
to the background. This means that the entrainment rate of background air into the
plume would need to be much faster than the coagulational loss timescales (~ 5h for
20nm particles) in order for entrainment to sustain the number of small particles. If
entrainment timescales were significantly shorter than 5h, the plume would almost
completely disperse into the background within 1 day.

There are a number of mechanisms other than entrainment that could explain the
higher tail concentrations found in plume despite the short coagulation lifetimes. In-
plume nucleation and subsequent growth to SMPS-detectable sizes could also partially
account for sustained elevated small particle concentrations. Hennigan et al. (2012)
showed with the FLAME-IIl chamber studies that in-plume nucleation was possible
as a result of photochemical aging and SOA production in smoke plumes. Nucleation
modes in association with smoke plumes have also been observed previously in field
studies (Hobbs et al., 2003; Rissler et al., 2006). We attempted to determine the nu-
cleation and growth rates required to sustain the observed concentration of small par-
ticles; however, the necessary condensational growth rates that were required to fit
the observed data were unrealistically high, which we see as evidence against nucle-
ation/growth being the primary source of the small particles. Thus, we are unsure of
the source of these particles.

3.2 Net production/loss of organic aerosol with time

Enhancement ratios are a way of characterizing plume chemistry as a ratio of a specific
species to a reference species. This was done for the sampled BORTAS pyrogenic
outflow by taking the excess (background concentration removed) of the AMS organic
aerosol normalized to the excess CO (AOA/ACO). Only those data which were in
excess of the mean background (CO = 100 ppbv, OA = 2 ug m'3) were compiled. The
characteristic AOA/ACO ratio can be used as a comparison value between fires of
different fuel type, phases or photochemical ages.
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Since CO has a sufficiently long lifetime and is co-emitted with OA in abundance
at the source, any changes in the organic aerosol enhancement ratio over the lifetime
of the plume are attributed to in-plume chemistry. The formation of secondary organic
aerosol is possible within the plume by oxidation of organic vapors to lower-volatility
products. Evaporation of less-volatile POA during plume dilution competes with the
SOA condensation. The net OA production is therefore: AOA ot = SOA[oq — OAgyap-
Changes in the AOA/ACO ratio over time can therefore indicate which of the two
processes is dominant.

The organic aerosol enhancement ratios for Flight b622 are shown in Fig. 7. There
is a fairly pronounced altitude dependence as seen in Fig. 7a, with several high al-
titude (~ 7 km) samples having fairly low excess organic aerosol, but significant ACO
(300 ppbv). This trend is featured in Franklin et al. (2014) where the high-altitude plume
showed evidence of an aerosol rainout event causing low AOA/ACO within the plume
transected at those high altitudes.

We will focus on the lower-altitude plume where the aerosol was not rained out, so
we employ a height cutoff of 4.6 km to restrict the enhancement ratio calculations to
lower-altitude, OA-rich plumes least likely to have seen significant reduction in organic
aerosol from wet deposition. The mean enhancement ratios by transect are seen in
Fig. 7b (for transect locations see Fig. 1). Only those sampling periods that passed
the OA and CO plume criteria (detailed above) are shown. The lower-altitude plume
enhancement ratio show correlations of A2 > 0.5 for each transect with the exception
of Transect 8 (,‘?2 =0.26).

Figure 8 shows AOA/ACO as a function of the distance from the source fires (hori-
zontal error bars correspond to error due to the radius of the Ontario fire region, vertical
error bars are calculated from transect data scatter). Compared across transects, the
enhancement ratios show no significant trend (to p value = 0.55). The average en-
hancement ratio is 0.13+0.01 (ug m= ppbv‘1) and can be considered characteristic of
the aged boreal plume during these BORTAS flights.
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The lack of trend in Fig. 8 suggests that we cannot determine if there was any net
production/evaporation of OA happening inside the plume. Any SOA produced photo-
chemically inside the plume is either being accompanied by an opposing loss of POA or
at such a rate that is below the observational variability over the sampled time period.
The statistically invariant AOA/ACO does not discount evaporation-condensational
cycling of POA and SOA, or the effects such recondensation would have on the size-
distribution (although there was no apparent trend in the size distribution either (Fig. 4)).
No increase in normalized excess OA fraction means significant levels of excess SOA
were not likely driving condensational growth, ensuring that coagulation was dominat-
ing the size-distribution evolution during the period of aging between 1 day and 2 days
since emission. Since no significant trend was found in size-distribution D, with dis-
tance from the source in the observations (see Fig. 4), any effect of POA-SOA cycling
on the shape of the distribution cannot be isolated above the noise. However, it does
not preclude that there was significant net OA production/evaporation that occurred
prior to or after this observed period. Thus, although evidence of photo-oxidation and
chemical processing was observed in-plume by Parrington et al. (2013), any chemical
composition impact on the size-distribution seems negligible.

3.3 Estimation of the fresh biomass burning size distribution

In this section, we test the parameter space of our microphysical model to estimate
the fresh plume size-distribution emitted from the source fires. We allowed the fresh
biomass-burning size distribution to evolve for 48 h and compared the result to the
observed SMPS plume composite distribution to isolate the optimal fresh plume size-
distribution parameters. These were then compared to observed fresh BB size distri-
butions for context.

The Lagrangian microphysical model was run for 48 h with fixed entrainment coeffi-
cients of 74, = 24 h, 74 = 36 h and 7 = 48 h. Figure 9a shows the optimal fresh plume
distribution parameters that were obtained for each tested entrainment rate. Figure 9b
shows the modelled aged distributions plotted with the measured distribution. None of
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the model runs can capture the elevated concentrations in the tail particles in the SMPS
data, though this is expected due to the coagulation-dominant aging in the model (dis-
cussed above) and adds further uncertainty to the existence of this small tail.

The fresh plume size-distributions are unimodal with median diameters of 94, 67, and
59 nm for 74, = 24 h, 74, = 36 h and 74, = 48 h, respectively (o =1.7, 2.1, 2.8, respec-
tively). The higher entrainment rate of background aerosol requires the fresh plume dis-
tribution to be narrower (lower o) and have an initial median diameter closer to the final
diameter (Dgfing = 230 nm). The initial number concentrations in the fresh plume were

found to be optimized at 62 500, 80 000, and 115000 (cm_3) for 74; =48h, 74y =36h
and 74, = 24 h, respectively. The initial higher concentrations, narrower modal width and
larger median diameter are required for the higher entrainment rates to account for the
more rapid plume dilution and subsequently the slowing of the coagulation rates.

As the exact aging time and dilution profiles are unknown in addition to uncer-
tainties in the plume age, we cannot say with certainty which of these estimates is
best; however, these results compare to the field observations presented in Janhall
et al. (2010) for fresh plume smoke (range: D,,,, = 100-150 nm) and to small-scale lab
experiments measuring fresh smoke (range: Dy, = 30—-90 nm) (Hosseini et al., 2010).
Capes et al. (2008) conducted a similar fresh-plume size-distribution estimate from
their observed DABEX aged African smoke data using a coagulation box-model with-
out dilution. Their estimates for very fresh smoke have a much smaller D, (~ 30 nm).

The fresh plume size distributions modelled here are very sensitive to microphysical
processes directly after emission. Very close to the source, rapid dilution and conden-
sation (due to cooling) may occur, which are not captured by the coagulation/dilution
model we have developed. The fresh-plume distributions modelled in this study neglect
any immediate effects of condensation and/or evaporation of OA on the size-distribution
during cooling and dilution respectively, and focus on the effects of coagulation which
shape the size-distribution over a longer timescale (~ 10 h).

Figure 10 shows a time series of the optimal modelled size distribution for 74, = 36 h
over the 48h period. The median diameter growth (black line) occurs more rapidly
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during the early stages of the plume due to the higher particle concentrations before
significant dilution. Eighty percent of the final median diameter is achieved within 10h
of coagulation processing. Less drastic but similar rapid growth by coagulation was
seen by Capes et al. (2008) in their coagulation box model. This quick size distribution
evolution within the early plume stages suggests that large grid box models (global,
regional) should be using aged biomass-burning size-distributions as input.

4 Conclusions

The BORTAS-B campaign provided the opportunity to collect numerous gaseous
and aerosol measurements from aged North-American biomass-burning plumes in
July 2011. The boreal fire emissions in northwestern Ontario were transported (1-
2 days) downwind to where they were sampled by the FAAM BAE-146 research aircraft.
We analyzed the plume data from two research flights (b622 and b623) and found little
variation in size-distributions between transects.

A characteristic size-distribution consistent between flights and transects was dom-
inated by the accumulation mode with D, = 230nm and with ¢ = 1.5. This unimodal
result is consistent with aged biomass-burning observations found globally in the pre-
vious field studies (Capes et al., 2008; Janhall et al., 2010; Kondo et al., 2011).

We also found elevated concentrations of small-diameter particles in the plume con-
trary to their coagulation lifetimes associated with the biomass-burning-associated ac-
cumulation mode. We were not able to explain such concentrations by entrainment of
background aerosol alone. The presence of such concentrations in the size-distribution
tail remains inconclusive.

The AOA/ACO enhancement ratios across Flight b622 show a strong linear corre-
lation below 4.6 km (R2 > 0.50) with values between (0.05-0.18)+0.01 pg m~3 ppbv‘1 .
We found no trend in transect enhancement ratios with distance from the source, indi-
cating no significant net SOA production in-plume over the sampling period.
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We used a microphysical model to estimate the fresh plume size distribution asso-
ciated with the BORTAS-B observations. Optimizing lognormal parameters for differ-
ent assumed dilution coefficients (74 = 24, 36, 48 h), the fresh plume size distribution
had me =59-94nm, 0 =2.8-1.7, and N, = 62 500-115 000 cm™3, Though the model
lacks condensation and chemical considerations, processing through coagulation and
dilution alone led to 80 % of the observed 48 h median-diameter growth within the first
10 h. This suggests that global climate models should be using coagulation-aged BB
size distribution inputs to account for the rapid evolution in plume particle size occurring
on scales smaller than the gridbox length.
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Figure 1. BORTAS-B ARA research flights b622 (red) from Nova Scotia to Quebec, and the
return flight b623 (blue) both on 20—21 July 2011. Circles represent midpoints of ascent/descent
transects along the flight paths. The ARA flew through biomass-burning emissions originating
from fires in Northwestern Ontario. The 17—20 July 2011 MODIS hotspot fires (fire radiative
power > 100 MW) are plotted in orange.
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Figure 2. Time series of BORTAS-B aircraft measurements of biomass-burning tracer species
for Flight b622. Threshold values (dashed black lines) were used across four species as plume
criteria: (i) CO (red, threshold = 150 ppb), (ii) acetonitrile (blue, threshold = 200 pptv), (iii) or-
ganic aerosols (green, mass threshold= 20 g m=2, at STP), (iv) black carbon (grey, number
threshold = 50cm™2, at STP). The bottom panel shows flight altitude with plume sampling pe-
riods coloured. The plume data is further divided into transects (1-9 in red-violet).
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Figure 3. Median plume number size distributions (corrected to cm™ at STP) divided by
transect for Flight b622. All size distributions show a consistent accumulation mode with
me ~220nm. Size bins with less than three data points in any transect are not shown, lim-
iting the contributions from transects 1, 7 and 8. The composite plume size-distribution for both
Flight b622 and b623 is seen in Fig. 5.
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Figure 4. Accumulation mode peak diameter by transect (2—6, 9) showing no significant trend
with plume transport distance. All colours are the same as in Fig. 3. Distance from fire sources
was estimated using transect midpoints and approximate source region area. Transects 1, 7
and 8 have insufficient accumulation mode plume data and have been omitted. The uncertainty
bars show uncertainty in the distance from the source (£150 km).
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Figure 5. Composite median number size distributions for Flights b622 and b623 (cm™ at

STP). The in-plume (red) and background (grey) air distributions are shown as absolute con-
centrations (a). The in-plume distributions are also normalized by CO mixing ratio (b). The black
lines are the median with the 25th and 75th percentiles overlain. The plume distributions have
Dgm =230 nm.
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Figure 6. (a) shows background (black solid line) and plume (red line) median concentrations
for small particle diameters (20-90 nm). The black dashed lines are the number distributions
after 24, 36 and 48 h of coagulational losses by the plume accumulation mode (Fig. 5a) from the
background level concentrations. These calculated concentrations are much lower than those
found in plume. (b) shows the coagulation lifetime as a function of particle diameter (on the
order of 10 s of hours in this diameter range).
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Figure 7. Enhancement ratios of AOA/ACOQ for Flight b622. (a) is coloured by altitude showing
potential aerosol washout in the high-altitude plume (> 4.6 km). (b) shows the ERs separated by
flight transect showing individual enhancement ratios of between 0.05-0.18+0.01 g m~3 ppb'1
with generally high correlation coefficients (R? > 0.7) for the majority. The data points collected
at altitudes greater than 4.6 km have been removed (as per 7a).
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Figure 8. Transect AOA/ACO enhancement ratios for Flight b622 as a function of the dis-
tance from the source fire region. The average ER is represented by the dashed black line
(0.134 ng m™® ppb'1). There is no discernible trend in AOA enhancement either by distance
(x axis) or time (colours). The uncertainty bars display the uncertainty in distance and in fitted
enhancement ratios.
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Figure 10. Plot of modelled size-distribution evolution for 74 = 36 h. The black line shows the
peak diameter at each timestep (At = 10 s). The fresh-plume size-distribution has optimal initial
parameters: D, = 67nm, o = 2.4, N, =80000cm .
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